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Abstract. An instanton method is proposed to investigate the quantum tunneling between two weakly-
linked Bose-Einstein condensates confined in double-well potential traps. We point out some intrinsic
pathologies in the earlier treatments of other authors and make an effort to go beyond these very simple
zero order models. The tunneling amplitude may be calculated in the Thomas-Fermi approximation and
beyond it; we find it depends on the number of the trapped atoms, through the chemical potential. Some
suggestions are given for the observation of the Josephson oscillation and the MQST.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena – 05.30.Jp Boson
systems – 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

The first experimental observations of Bose-Einstein con-
densation (BEC) in dilute gases of trapped alkali atoms [1]
have stimulated the studies of condensates in double well
traps. With a fascinating possibility of the observation
of new kinds of macroscopic quantum phenomena [2],
which are related to the superfluid nature of the conden-
sates, numerous authors have addressed this subject area
both experimentally and theoretically. Some recent exper-
iments have investigated the relative phase of two over-
lapping condensates in different hyperfine states [3] and
robust interference fringes between two freely expanding
condensates have been observed [4] after switching off the
double-well potential that confines them, indicating phase
coherence both in space and time. In fact the possibility of
condensate tunneling between two adjacent atomic traps
and detection of Josephson-like current phase effects have
been previously suggested [5–7] and intensively studied by
two main approaches which are capable of dealing with
quantum tunneling in this variant of the Josephson effect.
Authors with a quantum optics background tend to favor
models in which two boson modes are involved, the so-
called two-mode model [8–15]. The other category of the-
ories is based on using the differences of condensate phases
and atom numbers between the two sides of the trap as
conjugate quantum variables [16]. A detailed comparison
between these two approaches is given in reference [17].

The superfluid nature of condensates can be fully
tested only through the observation of superflows. Despite
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the many experimental efforts being focused on the cre-
ation of a Josephson junction between two condensate
bulks, direct experimental evidences for the atomic os-
cillation are still far from being realized. Theoretically
the Josephson junction problem has been studied in
the limit of noninteracting atoms for small-amplitude
Josephson oscillations [5,6], including finite-temperature
(damping) effects [16]. Dynamic processes of splitting
a condensate by raising a potential barrier in the cen-
ter of a harmonic trap [17,18] and decoherence effects
and quantum corrections to the semiclassical mean-field
dynamics [8,12,19,20] have also been studied. It has been
pointed out [9] that even though the Bose Josephson Junc-
tion (BJJ) is a neutral-atom system, it can still display the
typical ac and dc Josephson effects occurring in charged
cooper-pair superconducting junctions. Moreover, a novel
nonlinear effect has been predicted to occur in this BJJ:
the self-trapping of a BEC population imbalance arises be-
cause of the interatomic nonlinear interaction in the Bose
gas [8,9]. This was considered to be a novel “macroscopic
quantum self-trapping” (MQST) and was predicted to be
observable under certain experimental conditions. Three
related parameters, i.e. the ground state energy E0, the
interaction energy U , and more importantly, the tunneling
amplitude K, are still undetermined for a specific geome-
try of the potential well and have been taken as constants
in references [8,9]. It is the main purpose of this paper to
present a rigorous derivation of these quantities and we
find that they actually depend on the number of atoms
N . This N -dependence refines the conclusions and makes
the self-trapping easier to observe.

We develop the instanton method for a sensitive
and precise investigation of the tunneling between two
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condensates. The almost trivially looking problem of the
tunneling behavior in a double-well potential has attracted
much attention from theorists for decades. For a single
particle, the solution can be found even in quantum me-
chanics textbooks [21]. The advantage of a nonperturba-
tive method, as presented here, is that it gives not only
a more accurate description of the tunneling phenomena
but also a comprehensive physical understanding in the
context of quantum field theory. The periodic instanton
configurations, which have been shown to be a useful tool
in several areas of research such as spin tunneling [22,23],
bubble nucleation [24] and string theory [25], enable also
the investigation of the finite temperature behavior of
these systems. In the case of the Bose-Einstein system,
however, we need to evaluate the tunneling frequency for
a finite chemical potential even at zero temperature, due
to the nonlinear interaction between the confined atoms.
Therefore the chemical potential here replaces the posi-
tion of the excited energy and gives rise to an expected
higher tunneling frequency.

Thus, in this paper we will study the atomic tunnel-
ing between two condensates in a double-well trap, with
special attentions paid to the N -dependent tunneling am-
plitude. In Section 2 we summarize 3 critical conditions
which are related to the MQST effect in the two-mode
model. Analytical solutions to the coupled nonlinear BJJ
equations are derived in Section 3 and some novel features
about the different modes of MQST are discussed in detail.
We calculate the three related parameters in the BJJ tun-
neling system in the Thomas-Fermi Approximation (TFA)
and the corrections beyond it in Section 4, in particular,
the tunneling amplitude/frequency between the two con-
densates. We find they actually depend on the number of
the trapped atoms through the chemical potential. Our
results can be compared to the simple single-particle tun-
neling result in reference [8] and we find that the latter
corresponds to the low-energy or noninteracting case. A
detailed discussion about the optimal condition for ob-
servation of the MQST and the Josephson tunneling is
the subject of Section 5 where some comments are made
to the maximum amplitude of the oscillation. Finally our
summary and conclusions are given in Section 6.

2 Two-mode model and macroscopic
quantum self-trapping

At zero temperature the condensate dynamics can be well
described by the Gross-Pitaevskii equation (GPE)

i~
∂Φ

∂t
= − ~

2

2m
∇2Φ+

[
Vext(r) + g0 |Φ|2

]
Φ (1)

where Vext is the external trapping potential and g0 =
4π~2a/m is the interatomic coupling constant, with a, m
the atomic scattering length and mass, respectively. In this
paper we will consider systems interacting with repulsive
forces with a > 0. To obtain the ground state properties,
one can write the macroscopic wave function (or from the
viewpoint of phase transitions, the order parameter) of the

condensate as Φ(r, t) = φ(r)e−iµt/~, where a condensate
in the stationary state was assumed. Then the GPE (1)
becomes

µφ(r) =
(
Ĥ0 + g0φ

2(r)
)
φ(r),

Ĥ0 = −~
2∇2

2m
+ Vext(r) (2)

with Ĥ0 the Hamiltonian for the condensates of nonin-
teracting bosons. This equation explains the significance
of the chemical potential µ as an energy of the station-
ary level and can be used further for calculation of the
coupling between two condensates, say, the tunneling am-
plitude (transfer matrix element or Josephson tunneling
term) as will be shown below.

Consider a double-well trap produced, for example, by
a far-off-resonance laser barrier that cuts a single trapped
condensate into two parts. In the two-mode approxima-
tion, the condensate dynamics is described by the follow-
ing BJJ equations [9,10]

i~
∂ψ1

∂t
= (E1 + U1N1)ψ1 −Kψ2,

i~
∂ψ2

∂t
= (E2 + U2N2)ψ2 −Kψ1, (3)

where damping and finite temperature effects are ignored
and a two-mode variational ansatz is assumed

Φ(r, t) = ψ1(t)Φ1(r) + ψ2(t)Φ2(r). (4)

Here the complex coefficients ψi(t) =
√
Ni(t) exp[iθi(t)]

are spatially uniform and contain all of the time depen-
dence, while the two states Φ1(r) and Φ2(r) are localized
in the left and right wells, respectively, and contain all of
the position dependence. The total number of atoms is
conserved in the macroscopic quantum tunneling process,
i.e., N1+N2 = |ψ1|2+|ψ2|2 = NT. In the BJJ equation (3),
E1,2 are the zero-point energies in each well,

E1,2 =
∫

drΦ1,2(r)Ĥ0Φ1,2(r), (5)

UiNi are proportional to the atomic self-interaction ener-
gies, with

U1,2 = g0

∫
drΦ4

1,2(r) (6)

and K describes the amplitude of the tunneling between
condensates

K = −
∫

drΦ1(r)Ĥ0Φ2(r). (7)

These quantities, which are expressed in terms of appro-
priate overlap integrals of the wave-functions Φ1,2(r), have
been taken as constants in the previous works and it is one
of the main tasks of this paper to obtain them analytically,
provided that a specific geometry of the trap is given. We
further note that the (real) ground state solutions Φ1,2(r)
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for isolated traps with equal population in each well, i.e.
N1 = N2 = NT/2, satisfy the orthonormality condition∫

drΦi(r)Φj(r) = δij . (8)

For simplicity we restrict our discussions to a symmetric
double-well potential, which means that the spatially av-
eraged quantities (5) and (6) are equal for each well. The
equations for the relative phase φ(t) = θ2(t) − θ1(t) and
fractional population imbalance z = [N1(t)−N2(t)] /NT

reduce to [9,10]

ż(t) = −
√

1− z(t)2 sinφ(t),

φ̇(t) = Λz(t) +
z(t)√

1− z(t)2
cosφ(t), (9)

with the conserved energy

H = H[z(t), φ(t)] =
Λ

2
z(t)2 −

√
1− z(t)2 cosφ(t)

= H[z(0), φ(0)] =
Λ

2
z(0)2 −

√
1− z(0)2 cosφ(0) = H0.

(10)

We have rescaled 2Kt/~ to a dimensionless time t for time-
independent coupling K between two condensates. The
parameter Λ, which determines the dynamic regimes of
the BEC atomic tunneling, can be expressed as

Λ =
UNT

2K
, U = (U1 + U2) /2. (11)

We observe 3 different critical conditions in refer-
ences [9,10]. One is the MQST condition which is de-
fined by

〈z(t)〉 6= 0⇒ H0 > 1

⇒ Λ

2
z2(0)−

√
1− z2(0) cos [φ(0)] > 1. (12)

In a series of experiments in which φ(0) and z(0) are kept
constant but Λ is varied by changing the geometry or the
total number of condensate atoms, we have the critical
condition

Λ > Λc =
1 +

√
1− z(0)2 cosφ(0)
z(0)2/2

· (13)

On the other hand, changing z(0) and keeping φ(0) and Λ
constants we have a critical initial population imbalance

zc =
2
Λ

√
Λ− 1 (14)

in both 0-phase mode and π-phase mode case, which de-
scribe the tunneling dynamics with the initial or time-
averaged value of the phase across the junction being 0 and
π, respectively. But for φ(0) = 0, if z(0) > zc, MQST sets
in, and for φ(0) = π, z(0) < zc marks the region of MQST.
In Figure 1 we show the parameter range for the appear-
ance of MQST and Josephson tunneling for 0-phase mode,
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z(0)

Fig. 1. The parameter range for the appearance of MQST for
0-phase mode: M → MQST, J → Josephson tunneling.
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Fig. 2. Different MQST mode for π-phase mode: J →
Josephson tunneling, I→MQST Type I, II→MQST Type II,
R→MQST unbounded running phase mode. The vertical and
horizontal lines correspond to the case of Figures 5 and 7 of
reference [10], respectively.

while for the π-phase mode this phase diagram manifests
much richer structure as shown in Figure 2. It should be
pointed out that the vertical axis Λ can extend to much
larger values, but we illustrate in the figure only the area
of interest. For Λ > 2 and φ(0) = π, the effective poten-
tial W (z) (Eq. (4.13) in Ref. [10]) always has a double-well
structure and the system is self trapped for all values of
z(0). We conclude that in the case of the π-phase mode
the MQST will set in for most of the areas, leaving only
a small area for actual Josephson tunneling.

The second condition comes from the stationary z-
symmetry-breaking solution [10] the value of zs is just
the boundary of the first- and the second-type of trapped
states which differ by the time-average value of the pop-
ulation imbalance 〈z〉. We enter into some detail of the π
phase mode. According to [10], there are two kinds of such
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π-phase modes with MQST:

π-phase modes MQST Type I⇔ 〈z〉 < zs 6= 0
π-phase modes MQST Type II⇔ 〈z〉 > zs 6= 0 (15)

with zs being the stationary z-symmetry breaking value
of the BJJ equations (3). Once Λ exceeds the value

Λs =
1√

1− z2(0)
, (16)

a changeover occurs at the stationary state and the sys-
tem goes from Type I of the π-phase trapped state into
Type II. In the phase plane portrait of the dynamical vari-
ables z and φ (Fig. 7 in Ref. [10]) for the fixed value
of z(0) = 0.6, this critical condition corresponds to the
4 point-like trajectories located at (±π,±0.6). However,
in consideration of the case of a fixed value of Λ, for ex-
ample, Figures 5c and 5d in reference [10], we find that this
definition of the Type I and Type II π-phase modes will
lead to a dilemma in the analysis of the phase diagrams
and modification to this definition becomes necessary. We
return to this point in the following section.

The third condition defines whether the phase φ(t)
is an unbounded running mode or is localized around π.
Again from the z ∼ φ phase diagram we know this bound-
ary line can be determined as

φ|z=±1 =
π

2
,

dφ
dz
|z=±1 = 0⇒ Λ

2
= H0 (17)

which gives the critical values

Λ3 =
2√

1− z2(0)
, or z3 =

√
1− 4

Λ2
· (18)

In Figure 2, we managed to give a phase diagram for
the π-phase mode, with special attention paid to different
MQST modes. Here the area J shows again the Josephson
tunneling area, others are 3 MQST areas, with area I the
bounded MQST of Type I, area II the Type II, and area R
the unbounded running phase mode, respectively. We used
the formulae (13, 16, 18) for these three curves, from the
bottom up, respectively. We point out that the second and
the third conditions apply only to the φ(0) = π case.

3 Exact analytic solutions and different
MQST modes

In order to see the oscillations of the fractional popula-
tion imbalance and the different kinds of (running- and
π-phase) MQST modes more transparently, we introduce
an effective classical particle whose coordinate is z, mov-
ing in a potential W (z) with the initial energy W0. The
effective equation of motion is

ż(t)2 +W (z) = W0 (19)

where

W (z) = z2

(
1− ΛH0 +

Λ2

4
z2

)
, (20)

W0 = 1−H2
0 = W [z(0)] + ż(0)2. (21)

We can easily obtain the real time exact solutions in terms
of the Jacobian elliptic functions cn and dn. This has been
done in references [10,11] but there are some notation er-
rors in the corresponding expressions. We thus rewrite the
solutions here and present a detailed discussion, especially
on some featured oscillation modes. For the parameters in
the area of Josephson tunneling the population imbalance
oscillates sinusoidally or nonsinusoidally between a posi-
tive initial value C and a negative one −C,

z(t) = C cn
(
CΛ

2k
(t− t0), k

)
(22)

where

C2 =
2
Λ2

(
(H0Λ− 1) +

ζ2

2

)
,

α2 =
2
Λ2

(
ζ2

2
− (H0Λ− 1)

)
,

ζ2 = 2
√
Λ2 + 1− 2H0Λ (23)

with 0 < k < 1 the elliptic modulus,

k2 =
C2

α2 + C2
=

1
2

(
CΛ

ζ

)2

=
1
2

(
1 +

H0Λ− 1√
Λ2 + 1− 2H0Λ

)
·

(24)

In the case of MQST, however, the elliptic function cn
will be replaced by its counterpart dn and the oscillation
is about a nonzero average value 〈z〉

z(t) = C dn
(
CΛ

2
(t− t0), 1/k

)
· (25)

From this we know the value z(t) = 0 is inaccessible at any
time and the modulus is now 1/k with k > 1. The integra-
tion constant t0 can be determined from z(t)|t=0 = z(0):

t0 =
2k
CΛ

cn−1

(
z(0)
C

, k

)
=

2
Λ
√
α2 + C2

F

(
arccos

z(0)
C

, k

)
(26)

where F (φ, k) =
∫ φ

0
dφ(1 − k2 sinφ)−1/2 is the incom-

plete elliptic integral of the first kind. Noting the following
correspondence

0 < k < 1, α2 > 0, H0 < 1, Josephson oscillation

k > 1, α2 < 0, H0 > 1, MQST (27)

we easily derive the physical condition for the onset of
MQST, i.e., H0 = 1 and Λ = Λc, from the mathemat-
ical condition k = 1, where the character of the elliptic
function solution changes. The Jacobian elliptic functions
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cn(u, k) and dn(u, k) are periodic in the argument u with
period 4K(k) and 2K(k), respectively, where K(k) is the
complete elliptic integral of the first kind. The time period
of the oscillation of z(t) is then given by

τ =
2k
CΛ

4K(k), for 0 < k < 1, (28)

τ =
2
CΛ

2K(1/k), for k > 1. (29)

In the limit of small amplitude, or linear oscillations,
k → 0, K(k)→ π/2, we have

τ =
2π

4
√
Λ2 + 1− 2H0Λ

· (30)

For 0, π-phase oscillations,H0 → ∓1, the periods in scaled
units 2Kt/~ become

τ =
2π√
1± Λ

, (31)

respectively, which agree with the unscaled ones
(Eqs. (4.7, 4.10) in Ref. [10])

τ−1
0,π =

√
4K2 ± 2UNTK/2π~. (32)

We consider here two special cases, i.e., the 0, π-phase
modes. For the 0-phase mode, by inserting φ(0) = 0 into
equation (23), we may show that the oscillation amplitude
of z(t) is just the initial value z(0),

C = z(0). (33)

On the other hand, for the π-phase mode, this amplitude
will depend on the values of Λ and z(0),

C2 = z2(0), when Λ < Λs or z(0) > zs,

C2 = z2(0) +
4
Λ2

[
Λ
√

1− z2(0)− 1
]
,

when Λ > Λs or z(0) < zs. (34)

In the case of Josephson tunneling for both 0- and π-
phase modes, that is, when the oscillation is in the form
of elliptic function cn-type, we always have C = z(0). The
reason is that under the condition Λ > Λs or z(0) < zs

for π-phase mode the system is obviously in the region
of MQST Type II. Therefore we should use the elliptic
function dn for MQST instead. Generally for MQST the
average population imbalance may be calculated as (the
elliptic function dn oscillates between 1 and k′dn)

〈z〉 =
C

2
(1 + k′dn) =

C

2

(
1 +

√
1− 1/k2

)
=
C

2

(
1 +

√
1− 2ζ2

C2Λ2

)
. (35)

For the 0-phase mode, C = z(0) and ζ2 =
2(Λ
√

1− z2(0) + 1), the average population imbalance is

〈z〉 =
z(0)

2

1 +

√√√√
1−

4
(
Λ
√

1− z2(0) + 1
)

z(0)2Λ2

 . (36)

We take the values of Figure 2 of reference [10] as an
example, Λ = 10, z(0) = 0.65, 〈z〉 = 0.46511, which is
exactly the case. For the π-phase mode, there are two
cases.

Case I: Λ < Λs or z(0) > zs we have C = z(0) and ζ2 =
2
(

1− Λ
√

1− z2(0)
)

which give the average population
imbalance as

〈z〉 =
z(0)

2

1 +

√√√√
1−

4
(

1− Λ
√

1− z2(0)
)

z(0)2Λ2

 · (37)

For the parameter in Figure 3d of reference [10], z(0) =
0.6, Λ = 1.2, 〈z〉 = 0.54944 < 0.6. This is again exactly
the case.

Case II: Λ > Λs or z(0) < zs we have

C2 = z2(0) +
4
Λ2

[
Λ
√

1− z2(0)− 1
]
,

ζ2 = 2
(
Λ
√

1− z2(0)− 1
)
, (38)

the average population imbalance is the same as that
in Case I, equation (37). For Figure 3f of reference [10],
z(0) = 0.6, Λ = 1.3, 〈z〉 = 0.63715 > 0.6.

We may compare our phase diagram Figure 2 with
those previously known results. First we have a look at the
Figure 7 of reference [10], which illustrated the behavior
of the system in the z−φ phase-plane, and concentrating
only on the π-phase mode. At a fixed value of z(0) =
0.6, increasing the value of Λ will bring the system from
area J to area I (Type I bounded MQST with 〈z〉 < 0.6),
then area II (Type II bounded MQST with 〈z〉 > 0.6),
and finally into the running mode area. This process is
described by a vertical line in Figure 2 and it intersects
successively the three curves at

Λc = 10/9 = 1.1̇, Λs = 1.25, Λ3 = 2.5, (39)

from the bottom up. In Table 1 we list detailed descrip-
tions and graphical features of the oscillations in accor-
dance with Figure 7 of reference [10]. The coincidence here
is obvious.

Secondly we go through Figure 5 of reference [10] to
see what happens if we keep the value of Λ constant and
increase z(0). This is indicated in Figure 2 by a horizon-
tal line. For small values of z(0), the phase is unbounded
and the system exhibits running phase MQST. However,
above a certain value z3 =

√
1− 4/Λ2 (cf. Λ3; there is an

error in reference [10] where the condition z(0) = 2zs =
2
√

1− 1/Λ2 is unphysical since it is larger than 1), with
〈z〉 still nonzero, the phase becomes localized around π
and remains bounded for all larger values of z(0). Then
the puzzle appears here. According to reference [10], in
their Figures 5c and 5d, z(0) = 0.7 and 0.98 mark the two
different types of π-phase MQST since they are on either
side of the stationary state value of zs =

√
1− 1/Λ2. In

this case, along the direction of the horizontal line from left
to right, we should enter Type I first (z(0) = 0.7 < 0.92),
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Table 1. Different oscillation modes for fixed value z(0) = 0.6.

φ(0) = π Descriptions Graphics

Λ = 0 Rabi oscillation around 〈z〉 = 0 O

0 < Λ < Λc sinusoidal/nonsinusoidal oscillation around 〈z〉 = 0 0

Λ = Λc = 1.111 the trajectory shrinks and is pinched at the point z = 0 8

marking the onset of π-phase MQST Type I with 〈z〉 < z(0)

Λc < Λ < Λs upon further increasing the area are divided into 2 parts ◦
◦

Λ = Λs = 1.25 the 2 divided areas collapse to 2 point-like trajectories :
at z = 0.6; boundary between MQST Type I and Type II

Λs < Λ < Λ3 further increase of Λ induces a reflection of the trajectory o
o

about the fixed point and π-phase MQST Type II with 〈z〉 > z(0)

Λ = Λ3 = 2.5 boundary between bounded-mode (Type II) and running-mode MQST ∇
∆

Λ > Λ3 the trajectory joins the unbounded running-mode MQST ω
m

then Type II (z(0) = 0.98 > 0.92). But this is not the
case, instead we enter Type II first. The horizontal line
cuts the two curves at z3 = 0.6 and zs = 0.92, with the
latter corresponding to a point-like trajectory in Figure 5d
of reference [10] at z = 0.92, φ = π. Another possibility is
that although the initial value z(0) = 0.7 < 0.92 but the
average value 〈z〉 > 0.92. However, from equation (37), we
find that in both cases, i.e. for z(0) = 0.7 and 0.98, we
have 〈z〉 < 0.92.

A solution to this dilemma is to define the MQST
Types I and II as follows:

MQST Type I ⇔ 〈z〉 < z(0)
MQST Type II ⇔ 〈z〉 > z(0) (40)

instead of (15). Under this novel definition we can explain
the phase diagrams as follows: for z(0) = 0.7 the average
population difference 〈z〉 > 0.7 which is obviously Type II,
while for z(0) = 0.98 we have 〈z〉 < 0.98 which is Type I
according to this definition. Therefore, along the direction
of the horizontal line from left to right, we enter Type II
first (〈z〉 > z(0) = 0.7), then Type I (〈z〉 < z(0) = 0.98).
At the threshold point, the average value coincides with
the initial value, 〈z〉 = z(0) = zs = 0.92, and the tra-
jectory shrinks to a point. We also notice that the oscil-
lation trajectories for z(0) = 0.8 and 0.98 are the same.
However, they belong to different regions of MQST. In
Table 2 we illustrate the oscillation behavior of a π-phase
mode when the value of z(0) is increased while keeping
Λ = 2.5, which can be regarded as an additional remark
to Figures 5c and 5d in reference [10]. A further evidence
of the correctness of the criterion (40) comes from the fact
that from the analytical result for the average population
imbalance in the π-phase mode, that is, equation (37), we
can derive the second critical condition for Λ,

〈z〉 = z(0)⇒ Λs =
1√

1− z2(0)
(41)

which agrees with equation (16). And in the case of the
0-phase mode there is no solution for 〈z〉 = z(0) with
〈z〉 determined by equation (36), indicating that the self-
trapping can only appear as MQST Type I (〈z〉 < z(0)).

4 Calculation of the tunneling amplitude
between two trapped condensates

The macroscopic wave function Φ associated with the
ground state of a dilute Bose gas confined in the poten-
tial Vext(r) obeys the GPE (1), which can be obtained
alternatively using a variational procedure:

i~
∂

∂t
Φ =

δE

δΦ∗
, (42)

where the energy functional E is defined by

E[Φ] =
∫

d3r
[
~2

2m
|∇Φ|2 + Vext(r) |Φ|2 +

g0

2
|Φ|4

]
= Ekin +Eho +Eint. (43)

The three terms in the integral are the kinetic energy of
the condensate Ekin, the (an)harmonic potential energy
Eho, and the mean-field interaction energy Eint, respec-
tively. In the simplest case of an isotropic harmonic trap
Vext(r) = mω2

0r
2/2, these energy components, which as-

sume the following simple values in the TFA

Ekin

N
= 0,

Eho

N
=

3
7
µTF,

Eint

N
=

2
7
µTF (44)

can be calculated beyond the TFA [2,6,26]

Ekin

N
' 5

2
C,

Eho

N
=

3
7
µTF + C,

Eint

N
=

2
7
µTF − C

(45)
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Table 2. The oscillation behavior of a π-phase mode for fixed value Λ = 2.5.

z(0) The potential W (z) The trajectory φ Descriptions

0 double-well with W0 pinched always

just on the top of the barrier at z(0) = 0 MQST

0 < z(0) < z3 W0 under the barrier whose unbounded running-phase

height increases with z(0) MQST

z(0) = z3 = 0.6 barrier height increases φ|z=1 = π/2, boundary between

continuously with z(0) dφ
dz |z=1 = 0 unbounded and localized φ

z3 < z(0) < zs barrier height increases localized bounded MQST

continuously with z(0) around π Type II with 〈z〉 > z(0)

z(0) = zs = 0.92 barrier attains shrinks to point-like boundary between

its maximum height trajectory at π MQST Type I and Type II

zs < z(0) < 1 barrier height decreases expands but bounded MQST

with increasing z(0) again localized Type I with 〈z〉 < z(0)

z(0) = 1 barrier height decreases to the agrees bounded MQST

same height as z(0) = 0.6 with z(0) = 0.6 Type I with 〈z〉 < z(0)

where C = (~2/mR2) ln (R/1.3aho) is a correction term
due to the presence of a boundary layer near the con-
densate surface. Here N is the number of atoms and the
harmonic oscillator length aho = (~/mω0)1/2 is introduced
for simplicity. Correspondingly the chemical potential in
the TFA

µTF =
~ω0

2
(15Na/aho)2/5 (46)

which is related to the radius of the condensate R through
µTF = mω2

0R
2/2, is modified beyond the TFA as

µ = µTF +
3
2
C. (47)

First we calculate the two relevant quantities in the
Bose Josephson Junction, i.e., the zero-point energy in
each well E1,2 in equation (5) and the atomic self-
interaction energies U1,2 in equation (6) both in TFA and
beyond it. We note that in the derivation above, the wave
function is normalized to N . If one uses instead a wave
function normalized to unity, the following correspondence
should be realized

U1,2N1,2 → 2
Eint

N
, E1,2 →

Ekin

N
+
Eho

N
· (48)

Setting the initial population difference z(0) = 0 as in
reference [9], i.e., N1 = N2 = N , we obtain the ground
state energy E1,2 and the interaction self energy U1,2N1,2

for the isolated traps beyond the TFA

E1,2 =
3
7
µTF +

7
2
C, U1,2N1,2 =

4
7
µTF − 2C, (49)

while for TFA the correction terms disappear and these
energies take simpler forms

E1,2 =
3
7
µTF, U1,2N1,2 =

4
7
µTF. (50)

Considering a condensate of N = 5 000 sodium atoms
confined in a symmetric spherical trap with frequency
ω0 = 100 Hz, we have the results beyond the TFA, E1,2 =
1.18 nK, U1,2N1,2 = 1.03 nK, and in TFA E1,2 = 0.9 nK,
U1,2N1,2 = 1.19 nK, quite close to the values estimated in
reference [9].

In the following we give a rigorous derivation of the
amplitude of the atomic tunneling at zero temperature be-
tween two nonideal, weakly linked condensates in a double
well trap. This induces a coherent, oscillating flux of atoms
between wells, that is a signature of the macroscopic su-
perposition of states in which the condensates evolve. To
date there have been no reports of experimental observa-
tions of Josephson tunneling of a condensate in a double
well trap. Josephson tunneling of a condensate in a one di-
mensional optical lattice was reported in reference [27] and
by controlling relative strengths of the tunneling rate be-
tween traps and atom-atom interactions within each trap,
this technique has been used to produce atom-number-
squeezed states in this lattice potential [28]. The analogy
of the tunneling mechanism in a two-well potential and an
array of wells makes it important to calculate the tunnel-
ing amplitude explicitly.

The quantity K in equation (7) corresponds to the
tunneling amplitude which can be calculated by differ-
ent methods, and we demonstrate in this work the use
of the nonperturbative instanton approach. The nonlin-
ear interaction between the atoms in the same well will
be included, which modifies only the chemical potential µ
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both in and beyond the TFA. It is easily shown that this
tunneling amplitude is just the quantity R of [8] (up to
a minus sign), if one observes the orthogonality property
of the eigenfunctions equation (8), with Φ1,2(r) the local
modes in each well. We study the amplitude for tunneling
between the two condensates confined in the wells of an
external double-well potential in the 3-dimensional

Vext(r) =
mω2

0

8x2
0

(x2 − x2
0)2 +

1
2
mω2

0y
2 +

1
2
mω2

0z
2 (51)

where we have assumed as in reference [8] that the inter-
well coupling occurs only along x and the wave function
components in the other two dimensions are orthogonal
and contribute a factor of unity. The two minima are lo-
cated at ±x0 on the x-axis and the parabolic approxima-
tion to the potential in the vicinity of each minimum is

Ṽ (2)(r − r1,2) =
1
2
mω2

0

[
(x± x0)2 + y2 + z2

]
· (52)

The barrier height between the two wells

V0 =
1
8
mω2

0x
2
0 (53)

is assumed to be high enough so that the overlap between
the wave functions relative to the two traps occurs only in
the classically forbidden region where interaction can be
ignored and one can safely use the WKB wave function
approximately [6]

Φ1,2(r) ∼ B

{2m [Vext(r)− µ]}1/4

× exp

(
−
√

2m
~2

∫ r

R

[Vext(r)− µ]1/2 dr′
)

(54)

with B a properly selected coefficient. The direct inte-
gration of K in equation (7) using the above WKB wave
functions is quite a difficult task, as already noticed in ref-
erences [6,16]. In the simplest case the local mode of each
well was assigned in reference [8] the harmonic oscillator
single particle ground state wave function

Φ1,2(r) =
(mω0

~π

)1/4

exp
(
−mω0

2~
r2
)

(55)

and the tunneling frequency was obtained through simple
integration of these Gaussian wave functions

Ω =
2
~
R =

2
~

∫
drΦ∗1(r)

[
Vext(r)− Ṽ (2)(r− r1,2)

]
Φ2(r)

=
x2

0

a2
ho

ω0e−x
2
0/a

2
ho . (56)

This result, however, is independent of the characteris-
tic parameters of the trapped atoms, such as the number
of the atoms, the chemical potential and the interatomic
coupling constant, etc. This inadequacy is expected to be
cured by means of the periodic instanton method pre-
sented in the following.

Alternatively in some references the authors [29] used
the external double-well potential in the form

Vext(r) = VH(r) + VB(r) (57)

which is created by superimposing a harmonic trap

VH(ρ, z) = mω2
z

(
λ2ρ2 + z2

)
/2 (58)

and a Gaussian barrier along the z-axis

VB(z) = U0 exp
(
− z2

2σ2

)
· (59)

In their calculations, they considered a range of values
for the trap frequencies ωz and ωρ, the barrier height
U0 and width σ, and the condensate population Nc. In
the spherical or 1-dimensional case, one can also consider
the time-dependent behavior by means of the variational
ansatz [18]. Our observation is that in the vicinity of the
tunneling region the above potential in the 1-dimensional
case

Vext(x) =
1
2
mω2

0x
2 + U0 exp

(
− x2

2σ2

)
(60)

can be well approximated by the double-well (61) consid-
ered in this paper for a variety of the geometric parameters
of the trap.

Now we turn to the field theory description of the GPE,
i.e. the periodic instanton method which can not only give
the correct exponential contribution of the Euclidean ac-
tion but also the prefactor. The equal population case with
N1 = N2 = N is assumed in the following calculations,
due to the negligible effect of the slow time evolution of
the number of particles Ni(t) [30]. To this end we con-
sider a scalar field problem in a 1-dimensional time plus
1-dimensional space

Vext(x) =
mω2

0

8x2
0

(
x2 − x2

0

)2
. (61)

After a Wick’s rotation t = −iτ the Euclidean-Lagrangian
equation of motion for a finite chemical potential takes the
form

1
2
m

(
dx
dτ

)2

− Vext(x) = −µ. (62)

The reason why we can handle a nonlinear problem by
means of a linear equation of motion is that we discuss
the tunneling behavior in the barrier region where the
nonlinear interaction is negligibly small. However, there
are obvious differences between the BEC tunneling sys-
tem and the usual one-body problem, i.e. the nonlinear
interaction contributes a finite chemical potential, which
is just the integration constant on the right hand side of
equation (62). The classical turning points on both sides of
the barrier can be determined by the relation V (x1,2) = µ
as suggested in reference [6]. For a noninteracting system
the chemical potential approaches the ground state energy
corresponding to the vacuum instanton case in [31,32].
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Solving this Euclidean time classical equation in the
usual way [32] one obtains the periodic instanton solution
in terms of the Jacobian elliptic function

xc = 2x0k̄b(k̄)/ω0 sn
(
b(k̄)τ, k̄

)
(63)

where sn is a Jacobian elliptic function with modulus k̄,
and the parameters are defined as

b(k̄) =
ω0

2

√
2

1 + k̄2
, k̄2 =

1− u
1 + u

, u =
√

µ

V0

(64)

with the imaginary time period T = 2K(k̄)/b(k̄). The ac-
tion for the half period can be calculated along the above
instanton trajectory (63)

Sc =
∫ T/2

−T/2
dτ
(

1
2
m(dxc/dτ)2 + Vext(xc)

)
= W + µT/2

(65)

where

W =
2
3

8V0

ω0
(1 + u)1/2

(
E(k̄)− uK(k̄)

)
· (66)

Here E(k̄) denotes the complete elliptic integral of the sec-
ond kind with modulus k̄. The frequency of tunneling be-
tween the two condensates is then given by the energy
level splitting of the two lowest states, i.e. Ω = ∆E/~ =
2K/~ = 2R/~ and can be calculated by means of the path
integral method as [32]

Ω =
1
~
Ae−W/~ =

√
1 + u

2K(k̄′)
ω0 exp

[
−W
~

]
· (67)

We emphasize here that an explicit prefactor A is included
in this formula, which has been proven to be valid for the
entire region when the chemical potential is below the bar-
rier height. A remarkable feature of this periodic instan-
ton result for the tunneling frequency is that it depends
on the chemical potential µ, or equivalently the number of
the trapped atoms N through equations (46) or (47). This
result will affect the conclusion about the observation of
the MQST, as will be shown in next section. When the
chemical potential approaches the top of the barrier, i.e.

V0 = µ (68)

the periodic instanton solution (63) becomes the trivial
configuration xc = 0 with a name “sphaleron” which
means “ready to fall” [33], where a type of quantum-
classical transition may occur [22]. From the equa-
tions (46, 53), in the TFA this means

x0 = 2R = 2aho

(
15NTa

2aho

)1/5

(69)

where NT = N1 +N2 is the total number of atoms in both
wells together. Therefore for a specific type of trapped
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Fig. 3. 3 different processes through which the condensates can
interchange atoms with the corresponding critical parameters
of the boundaries.

atoms and a given double-well potential with separation
x0 (the number of atoms NT) there exists a critical num-
ber of atoms Nc1 (critical separation xc1) determined by
the above equation, below (above) which the tunneling
process will give the main contribution to the tunneling
amplitude. However, above this critical number of atoms
or below this critical separation value another process, i.e.
the over-barrier activation will dominate (which is defi-
nitely not “thermal activation” as in spin tunneling since
the temperature is zero) (cf. Fig. 3). Between these two
processes there exists a crossover. A more explicit condi-
tion for this critical number of atoms (separation between
the two minima) can be derived beyond the TFA from
equations (47, 53), i.e.

x0 = 2R

√
1 +

3
5

(
15NTa

2aho

)−4/5

ln
(

15NTa

2aho1.35

)
· (70)

As an example, we consider two weakly-linked condensates
of NT = 104 sodium atoms, confined in two symmetric
spherical traps with frequency ω0 = 100 Hz as in refer-
ence [9]. The critical value for xc1 is xc1 = 24.58 µm or
more accurately xc1 = 25.29 µm. We note that here the
height of the potential barrier is V0 = 2.21 nK and the
ground state is located at ~ω0/2 = 0.38 nK so that there
are several energy levels beneath the barrier height. This
means the interaction between the atoms contributes to
the chemical potential, which effectively raises the classi-
cal turning points to a remarkably high level. Although
the atoms remain in the ground state, the interaction en-
ergy is so strong that the vacuum instanton method can
no longer be applied. We have to resort to the periodic
instanton method, as will be shown below.

We now consider the “low-energy” or “non-
interacting” limit, µ → 0. As in the case of a uniform
Bose gas, the number of atoms in the ground state can
be macroscopic, i.e., of the order of the total number in
one potential well, when the chemical potential becomes
equal to the energy of the lowest state, which, in our
1-dimensional case here, is µ → µc = ~ω0/2. The lower
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boundary for the chemical potential in fact implies that

µc =
1
2
~ω0 =

1
2
m0ω

2
0R

2
c → Rc =

√
~

m0ω0
= aho, (71)

i.e. the radius of the condensate should never be less than
the harmonic oscillator length aho. We thus have a result
similar to that in the vacuum instanton case [32] and the
“low energy” limit here is only meaningful in this sense.
Expanding equation (67) far below the barrier height, i.e.,
around the modulus k → 1, or equivalently evaluating the
tunneling amplitude in the vacuum instanton method [32],
we obtain for the tunneling frequency

Ω = 2

√
6Sc

π~
ω0 exp (−Sc/~) (72)

with the Euclidean action

Sc

~
=

2
3

8V0

~ω0
=

2
3
x2

0

a2
ho

· (73)

This result can be compared with that of reference [8],
equation (56), which, however, gives not only a smaller
exponential contribution

Sc

~
=

8V0

~ω0
=

x2
0

a2
ho

, (74)

(there is a 2/3 factor) but also an inaccurate prefactor

A = ω0Sc/~. (75)

The source of this inaccuracy is the adoption of the too
simple harmonic oscillator wave function of a single parti-
cle, which obviously oversimplifies the Bose-Einstein con-
densation tunneling problem. At least one should use the
WKB wave function (54) in the tunneling region, and it
can be shown that this corresponds to the vacuum instan-
ton result we present here. For the agreement between
WKB and vacuum instanton methods we refer to refer-
ence [34].

We clarify here some features about the two-mode ap-
proximation. It is only when there are many energy lev-
els in each well and the barrier height is very large that
the tunneling behavior can be well defined. As already
pointed out in reference [8], the potential should be such
that the two lowest states are closely spaced and well sep-
arated from higher levels of the potential, and that many-
particle interactions do not significantly change this situa-
tion. This assumption permits a two-mode approximation
to the many-body description of the system and requires
that x0 � aho. In the example considered in reference [8]
the harmonic length is estimated to be aho = 1.66 µm for
sodium atoms in a double-well trap with ω0 = 1 kHz. The
two-mode approximation requires that there are at least
two levels beneath the barrier, i.e.

V0 =
1
8
mω2

0x
2
0 &

3
2
~ω0, (76)
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Fig. 4. N-dependence of the tunneling frequency Ω for ω =
1 kHz, x0 = 5.76 µm: solid line is the result of periodic instan-
ton method beyond the TFA, while dashed line that in TFA.
The two horizontal lines are the results on noninteracting limit,
one corresponds to that of reference [8], another is from the
vacuum instanton method. Inset: ω = 100 Hz, x0 = 30 µm. In
both cases the constant results are negligibly small comparing
to the N-dependent frequencies.

which means the minimum separation x0 should be larger
than 5.76 µm. For this separation equation (56) gives the
tunneling frequency Ω ∼ 0.0737 Hz, whereas the vacuum
instanton result from (72) is Ω ∼ 2.62 Hz; however, it is
expected to reach 37% of ω0 in reference [8], that is 370 Hz
(from Eq. (56) we know this frequency can be achieved
only at a quite small separation x0 ∼ 1.6 µm). This is obvi-
ously in contradiction. To remedy this, we notice that the
periodic instanton result equation (67) can reach a maxi-
mum frequency Ω ∼ 150 Hz, which is a much higher one
but for a quite small number of trapped atoms Nc1 ' 535
(Fig. 4). This can be easily understood as follows. The
chemical potential for 5×105 atoms in the realistic experi-
ment of the MIT group in reference [1], µ = 158.35 nK, lies
much higher than the barrier height V0 = 11.46 nK if the
two condensates are separated as close as 5.76 µm, leading
to an unphysical parameter in equation (64) u =

√
µ/V0

which is larger than 1. In this case the periodic instanton
method cannot apply and the over barrier activation pro-
cess will dominate over the Josephson tunneling. In the
language of Josephson junction the two condensates seem
to be connected directly with each other and no barrier
exists between them. From another viewpoint, for the sep-
aration smaller than 5.76 µm we cannot put 5×105 atoms
in the double-well, i.e. the barrier seems no longer to exist
for so many atoms and one cannot distinguish to which po-
tential well the atoms belong and the oscillation is mean-
ingless. The upper boundary for the trapped number of
atoms can be estimated just to be Nc1 ' 535 from equa-
tion (70).

In Figure 4 we show the N -dependence of the tunnel-
ing frequency Ω both for a chemical potential in TFA (46)
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and beyond it (47). The periodic instanton results obvi-
ously lead to a rapidly growing behavior for the tunneling
frequency when the chemical potential, i.e. the number
of atoms is increased. The results of reference [8] equa-
tion (56) and that from the vacuum instanton method
equation (72) are also shown as horizontal lines.

5 Observation of macroscopic quantum self
trapping

We are now in a position to discuss the optimal condi-
tions for observation of the Josephson oscillation and the
MQST effects. According to reference [9], for a fixed value
of the initial population imbalance z(0) and phase dif-
ference φ(0), if the parameter Λ exceeds a critical value
Λc in equation (13), the population becomes macroscopi-
cally self-trapped with a nonzero average population dif-
ference 〈z〉. There are different ways in which this state
can be achieved, and all of them correspond to the so-
called MQST condition equation (12). Similar results were
obtained in reference [8] for the case that all atoms are ini-
tially localized in one well and it is concluded that the self-
trapping will occur when the total number of the trapped
atoms NT exceeds a critical value Nc2 determined by

Nc2 =
2~Ω
g0

Veff =
4K
U1,2

(77)

where V −1
eff =

∫
drΦ4

1,2(r) is the effective mode volume
of each well. For this special case z(0) = 1, the critical
value Λc is shown to be Λc = 2 for any initial phase dif-
ference φ(0) and equation (77) is obviously identical with
the MQST condition UNT > 4K from equation (12).

The parameters UNT and K, however, are considered
as N -independent constants in references [8,9]. Consider-
ing the fact that they depend actually on the number of
the trapped atoms N as in our calculation above, we can
refine the conclusions of references [8,9]. To access the re-
gion of self-trapping, that is, Λ = UNT/2K > Λc, it is
better to lower the value of K by making a higher barrier
height V0 = mω2

0x
2
0/8 through increasing the separation

x0 or the oscillation frequency ω0, than to increase the
number of atoms as suggested in reference [9]. In fact,
the quantity UNT here is proportional to µTF ∼ N2/5 as
shown in equations (50, 46), which means that increasing
the number of atoms will not increase the interaction en-
ergy significantly, and at the same time the tunneling am-
plitude will be increased more drastically (Fig. 4). Thus,
contrary to the observations in references [8,9], we find
that the MQST will occur when the number of atoms is
smaller (instead of larger) than a critical value Nc2, i.e.
we should decrease the number of atoms instead of in-
creasing it (Fig. 3). Inserting the values of the interaction
energy equations (50) or (49), the chemical potential equa-
tions (46) or (47) and the tunneling amplitude (67) into
equation (12) we may obtain this critical number of atoms
for a given potential geometry in TFA

8µTF = 7Λc~ΩTF, (78)
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or beyond it

8µTF − 28C = 7Λc~Ωb (79)

where ΩTF and Ωb are the tunneling frequencies in equa-
tion (67) with the chemical potential µ taking the values
in TFA and beyond it, respectively.

The parameters which can be adjusted are the number
of atoms NT, the oscillation frequency ω0, and the sepa-
ration distance between the two condensates x0. Figure 3
shows the three different regions for different numbers of
atoms and distances between the potential wells. When x0

(NT) is smaller (larger) than the critical value x2c (Nc2),
the atoms will oscillate between these two potential wells.
Once we increase the separation above (or decrease the
number of atoms below) this critical value, the MQST
will occur, i.e., most of the atoms will tend to remain in
their appropriate wells, leading to only a small oscillation
around a fixed population difference.

We take the initial condition for the population differ-
ence to be z(0) = 0.4 and the zero-phase case φ(0) = 0
as an example. Other cases with, for example, a non-zero
phase difference give rise to only a different critical pa-
rameter Λc. For sodium atoms confined in the double-
well potential with ω0 = 100 Hz, we show numerically
in Figure 5 the critical line between the three different
regions in TFA and beyond it. The upper region marks
the self-trapping region, the lower the over-barrier activa-
tion. Quantum tunneling occurs only for a small range of
the parameter. In the experiment [4], the barrier was gen-
erated by an off-resonance (blue detuned) laser beam. To
make our results more applicable to experiment we denote
on the right vertical axis the corresponding barrier height
in units of nK. We also find that the tunneling will be
suppressed when the separation or the number of atoms
satisfies x0 > 28 µm or NT > 12 500 (in TFA x0 > 26 µm
or NT > 12 000). The crossover will occur directly be-
tween the self-trapping and the over-barrier regions, quite
similar to the first-order transition in spin tunneling [22].
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The self trapping region is very easy to access considering
the easier decrease of the tunneling amplitude.

Secondly, from the solution for z(t) in equa-
tions (22, 25) we can define maximum amplitudes of os-
cillation. For equal populations initially, i.e. z(0) = 0, we
have H0 = − cosφ(0), and the amplitude

C =
1
Λ

[
2
(√

Λ2 + 1 + 2Λ cosφ(0)− Λ cosφ(0)− 1
)]1/2

.

(80)

For Λ > 2, there is only 1 maximum, i.e., φ(0) = π. For
Λ < 2, however, φ(0) = π is a minimum, while two max-
ima correspond to cosφ(0) = −Λ/2. Consequently from
equation (80) we have for Λ > 2

zmax = 2
√
Λ− 1/Λ (81)

and for Λ < 2

zmax = 1. (82)

We claim here that the result for the maximum amplitude
equation (26) of reference [29] is not relevant, in which
the author erroneously took φ(0) = π/2 as a maximum.
If instead the initial population difference is nonzero, in
reference [29] the author obtained the same result for the
maximum amplitude as equation (81) by setting φ(0) = 0
in equation (13). However, we show here this is not true
for φ(0) = π because for the π-phase mode it is when
z(0) > 2

√
Λ− 1/Λ that the Josephson oscillation will oc-

cur [10]. In this case equation (81) gives the minimum am-
plitude instead of the maximum one. As already shown in
Section 3, the oscillation amplitude in the 0-phase mode is
just the initial value of population imbalance z(0), while
in the more interesting π-phase mode, we plot the ampli-
tude equation (34) as a function of z(0) in Figure 6 for

different values of Λ. It is clear that the amplitudes in the
π-phase mode are always larger than those in the 0-phase
mode. The straight slope line is the result of the 0-phase
mode. For small values of Λ, the amplitudes join the slope
line when z(0) > zs =

√
1− 1/Λ2, with this critical value

zs increasing with Λ, and finally approaching 1 for very
large Λ. At a special value of Λ = 2, it is seen that the
oscillation amplitude can reach 1 even for a zero initial
population imbalance. For very large Λ the amplitudes in
these two cases agree tangentially with each other. How-
ever, from Figure 2, the condensates will be self trapped
for any initial population imbalance if Λ > 2, making the
Josephson tunneling unobservable.

6 Conclusions

We have shown that the periodic instanton method can
be used to investigate the tunneling problem in BEC sys-
tems at zero temperature. In particular, some deficien-
cies of the earlier treatments are removed. First of all,
the tunneling amplitude and the nonlinear interaction en-
ergy between the atoms which have been taken as con-
stants in references [8,9], are calculated analytically in the
Thomas-Fermi approximation and beyond it. The inter-
esting features of the MQST effect are discussed is more
detail and we observe the N -dependence of the tunnel-
ing amplitude K and the self interaction energy UNT.
Secondly, the N -dependence of the tunneling frequency
Ω manifests a rapidly growing behavior when the chem-
ical potential, i.e., the number of atoms in the trapped
condensate is increased. In this sense, the result of refer-
ence [8] may be considered as that of a non-interacting
approximation. Finally, for the observations of Josephson
oscillation and the self trapping effect, we suggest that one
should use a small number of trapped atoms and change
the barrier height through altering the separation x0 or
the oscillation frequency ω0 as is evident from the calcu-
lation of this paper. Furthermore the π-phase mode, that
is, when the relative phase of the wave functions between
the two condensates are opposite to each other, favors the
observation of MQST, since a somewhat large Λ will bring
the system out of the region of Josephson tunneling. To
observe the Josephson oscillation it is better one adjusts
instead the system into the 0-phase mode.

Recently direct observation of an oscillating atomic
current has been reported in a one-dimensional array of
Josephson junctions realized with 87Rb atomic conden-
sate [35]. The authors verified that the BEC’s dynamics on
a lattice is governed by a discrete, nonlinear Schrödinger
equation [36] which is common to a large class of nonlin-
ear systems. They used a simple variational estimate, as-
suming a Gaussian profile for the condensate in each trap,
giving the value of tunneling amplitude K, and a chemical
potential µ ∼ 0.06V0 that is much lower than the potential
barrier V0. This confirms our prediction that one should
use a small number of trapped atoms for the observations
of Josephson oscillation. They also observed that the wave
functions, as well as K, depend on the barrier height, how-
ever, leaving the analytical result unsolved. The instanton
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result can be extended to the investigation of the Bose-gas
in such a periodic optical lattice [36], the two-component
spinor condensates, or even the metastability in the case
of attractive interaction. Work along this direction is in
progress.
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